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(57) ABSTRACT

The present invention provides, among other things, methods
of processing medical images for producing images with
labeled anatomical features, including obtaining images con-
taining labeled anatomical features, obtaining unlabelled
images, comparing and selecting unlabelled images that most
closely resemble labeled images, and propagating label data
from labeled images to unlabelled images, thereby labeling
corresponding anatomical features on unlabelled images. The
present invention also provides systems for performing such
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1
METHOD AND APPARATUS FOR
PROCESSING MEDICAL IMAGES

This invention relates to a method and corresponding appa-
ratus for processing medical images. It is particularly suit-
able, but by no means limited, for processing magnetic reso-
nance images, for example of the human brain.

BACKGROUND TO THE INVENTION

The automated extraction of features from magnetic reso-
nance images (MRI) of the brain is an increasingly important
process in neuroimaging. Since the brain anatomy varies
significantly across subjects and can undergo significant
change, either during aging or through disease progression,
finding an appropriate way of dealing with anatomical difter-
ences during feature extraction has gained increasing atten-
tion in recent years.

Amongst the most popular methods for dealing with this
variability are atlas-based approaches. In the context of the
present work, an “atlas” is a dataset (which may be a 3D
image, a 2D image, images of any dimension, or a set of
images) having annotations or labels in order to identify
points, regions or structures within the image.

Atlas-based approaches assume that the atlases can encode
the anatomical variability either in a probabilistic or statistical
fashion. When building representative atlases, it is important
to register all images to a template that is unbiased towards
any particular subgroup of the population. Two approaches
using the large deformation diffeomorphic setting for shape
averaging and atlas construction have been proposed by
Avants and Gee (2004) and Joshi et al. (2004). Template-free
methods for co-registering images form an established frame-
work for spatial image normalization. In a departure from
approaches that seek a single representative average atlas,
two more recent methods describe ways of identifying the
modes of different populations in an image dataset (Blezek
and Miller, 2007; Sabuncu et al., 2008).

To design variable atlases dependent on subject informa-
tion, a variety of approaches have been applied in recent years
to the problem of characterizing anatomical changes in brain
shape over time and during disease progression. Davis et al.
(2007) describe a method for population shape regression in
which kernel regression is adapted to the manifold of diffeo-
morphisms and is used to obtain an age-dependent atlas.
Ericsson et al. (2008) propose a method for the construction
of a patient-specific atlas where different average brain
atlases are built in a small deformation setting according to
meta-information such as sex, age, or clinical factors.

Methods for extracting features or biomarkers from mag-
netic resonance (MR) brain image data often begin by auto-
matically segmenting regions of interest. A very popular seg-
mentation method is to use label propagation which
transforms labels from an atlas image to an unseen target
image by bringing both images into alignment. Atlases are
typically, but not necessarily, manually labelled. Early work
using this approach was proposed by Bajcsy et al. (1983) as
well as more recently Gee et al. (1993) and Collins et al.
(1995). The accuracy of label propagation strongly depends
on the accuracy of the underlying image alignment. To over-
come the reliance on a single segmentation, Warfield et al.
(2004) proposed STAPLE, a method that computes for a
collection of segmentations a probabilistic estimate of the
true segmentation. Rohlfing et al. (2004) demonstrated the
improved robustness and accuracy of a multi-classifier frame-
work where the labels propagated from multiple atlases are
combined in a classifier fusion step to obtain a final segmen-
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tation of the target image. Label propagation in combination
with classifier fusion was successfully used to segment a large
number of structures in brain MR images by Heckemann et al.
(2006).

Due to the wide range of anatomical variation, the selection
of atlases becomes an important issue in multi-atlas segmen-
tation. The selection of suitable atlases for a given target helps
to ensure that the atlas-target registrations and the subsequent
segmentation are as accurate as possible. Wu et al. (2007)
describe different methods for improving segmentation
results in the single atlas case by incorporating atlas selection.
Aljabar et al. (2009) investigate different similarity measures
for optimal atlas selection during multi-atlas segmentation.
Van Rikxoort et al. (2008) propose a method where atlas
combination is carried out separately in different sub-win-
dows of an image until a convergence criterion is met. These
approaches show that it is meaningful to select suitable
atlases for each target image individually. Although an
increasing number of MR brain images are available, the
generation of high-quality manual atlases is a labour-inten-
sive and expensive task (see e.g. Hammers et al. (2003)). This
means that atlases are often relatively limited in number and,
in most cases, restricted to a particular population (e.g.
young, healthy subjects). This can limit the applicability of
the atlas database even if a selection approach is used. To
overcome this, Tang et al. (2009) seck to produce a variety of
atlas images by utilizing a PCA model of deformations
learned from transformations between a single template
image and training images. Potential atlases are generated by
transforming the initial template with a number of transfor-
mations sampled from the model. The assumption is that, by
finding a suitable atlas for an unseen image, a fast and accu-
rate registration to this template may be readily obtained. Test
data with a greater level of variation than the training data
would, however, represent a significant challenge to this
approach. Additionally, the use of a highly variable training
dataset may lead to an unrepresentative PCA model as the
likelihood of registration errors between the diverse images
and the single template is increased. This restriction makes
this approach only applicable in cases where a good registra-
tion from all training images to the single initial template can
be easily obtained.

Atlas-based segmentation benefits from the selection of
atlases similar to the target image (Wu et al., 2007; Aljabar et
al., 2009). However, in practice, the initial atlases may only
represent a specific subgroup of the target image population.

There is therefore a desire to be able to propagate a rela-
tively small number of atlases through to a large and diverse
set of MR brain images exhibiting a significant amount of
anatomical variability.

Prior work where automatically labelled brain images were
used to label unseen images did not result in an improvement
of'segmentation accuracy over direct multi-atlas propagation.
In (Heckemann et al., 2006), when multiple relatively
homogenous atlases were propagated to randomly selected
intermediate images that were used as single atlases for the
segmentation of unseen images, the resulting average Dice
overlaps with manual delineations were 0:80, compared with
0:84 for direct multi-atlas propagation and fusion. Ina second
experiment, single atlases were propagated to randomly
selected intermediate subjects that were then further used for
multi-atlas segmentation, resulting in Dice overlaps with
manual delineations of 0:78 at best.

Further background art is provided by US 2007/0053589
Al, US 2008/0154118 Al and WO 2009/093146 Al, all of
which disclose methods for segmenting image data.
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SUMMARY OF THE INVENTION

According to a first aspect of the present invention there is
provided a method as defined in Claim 1 of the appended
claims. Thus there is provided a method of processing medi-
cal images, performed by a computer processor and compris-
ing the steps of: (a) obtaining one or more atlases containing
one or more images in which one or more anatomical features
have been labelled with label data; (b) obtaining a plurality of
unlabelled images; (c) comparing the labelled and unlabelled
images and selecting one or more unlabelled images that most
closely resemble(s) one or more of the labelled images; (d) to
each of those selected image(s), propagating label data from
one or more of the closest of the labelled images, thereby
labelling the corresponding anatomical feature(s) of each of
the selected image(s) and causing the selected image(s) to
become labelled image(s); and (e) iteratively repeating from
step (c), thereby labelling others of the unlabelled images.

The term “labelled” should be interpreted broadly, to
encompass any kind of delineation, segmentation or annota-
tion of an anatomical feature. Similarly, the term “label data™
should be interpreted broadly, to encompass any kind of cod-
ing that enables an anatomical feature to be delineated, seg-
mented or annotated on a medical image.

By virtue of the iterative propagation of label data from the
closest labelled images to the unlabelled images, each unla-
belled image can be segmented using structurally-similar
atlases. As a consequence, relatively large differences
between a labelled image and an unlabelled image may be
broken down into a number of small differences between
comparatively similar initially-unlabelled images through
which the label data is propagated, enabling registration
errors to be reduced.

Preferable, optional, features are defined in the dependent
claims.

Thus, preferably the step of comparing the labelled and
unlabelled images comprises embedding the images into a
low-dimensional coordinate system. This enables the labelled
and unlabelled images to be compared and the differences to
be quantitatively evaluated in a computationally-efficient
manner. In certain embodiments the low-dimensional coor-
dinate system may be a two-dimensional coordinate space,
thus further simplifying the analysis and processing of the
differences between the images.

Preferably the step of comparing the labelled and unla-
belled images comprises defining a set of pairwise measures
of'similarity by comparing one or more respective anatomical
features for each pair of images in the set of images. Particu-
larly preferably this step further comprises performing a
spectral analysis operation on the pairwise measures of simi-
larity, although those skilled in the art will appreciate that
there are other ways in which this may be accomplished.

The pairwise measures of similarity may represent the
intensity similarity between a pair of images, and/or the
amount of deformation between a pair of images.

Preferably the step of propagating label data comprises
propagating label data from a plurality of the closest of the
labelled images, based on a classifier fusion technique. This
enables the selected image(s) to be labelled with greater accu-
racy.

Preferably the method further comprises, after step (d) and
before step (e), a step of performing an intensity-based refine-
ment operation on the newly-propagated label data, in order
to further minimize the accumulation of registration errors
during the labelling process.

The images may be of different subjects. Alternatively, at
least some of the images may be of the same subject but taken
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4

at different points in time, thereby enabling intra-subject vari-
ance to be identified and studied.

The images may be magnetic resonance images, or other
medical images familiar to those skilled in the art.

The method may further comprise labelling an anatomical
feature representative of the presence or absence of a condi-
tion and using that feature to derive a biomarker for that
condition. On the basis of the biomarker, the method may
further comprise allocating a subject to a diagnostic category,
and/or quantifying a subject’s response to treatment, and/or
selecting a subject’s treatment.

According to a second aspect of the present invention there
is provided imaging apparatus arranged to implement a
method in accordance with the first embodiment of the inven-
tion. The imaging apparatus may be a medical scanner, such
as an MRI scanner, or some other type.

According to a third aspect of the present invention there is
provided image processing apparatus arranged to implement
a method in accordance with the first embodiment of the
invention.

According to a fourth aspect of the present invention there
is provided a computer system arranged to implement a
method in accordance with the first embodiment of the inven-
tion.

According to a fifth aspect of the present invention there is
provided a computer program comprising coded instructions
for implementing a method in accordance with the first
embodiment of the invention.

According to a sixth aspect of the present invention there is
provided computer-readable medium or physical carrier sig-
nal encoding a computer program in accordance with the fifth
embodiment of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by
way of example only, and with reference to the drawings in
which:

FIG. 1 illustrates the process of atlas propagation using our
new method;

FIG. 2 illustrates results showing the discrimination ability
for different chosen feature dimensions among four subject
groups (healthy young, elderly controls, MCI, AD);

FIG. 3 illustrates the MNI152 brain atlas showing the
region of interest around the hippocampus that was used for
the evaluation of pairwise image similarities;

FIG. 4 illustrates coordinate embedding of 30 atlases based
on healthy subjects and 796 images from elderly dementia
patients and age-matched control subjects;

FIG. 5 illustrates a comparison of segmentation results for
the right hippocampus on a transverse slice;

FIG. 6 illustrates the development of segmentation accu-
racy with increasing distance from the original set of atlases,
with each subset of images used for evaluation being repre-
sented by one bar plot;

FIG. 7 illustrates average hippocampal volumes for
manual and automatic segmentation; and

FIG. 8 is a Bland-Altman plot showing the agreement
between volume measurement based on manual and auto-
matic segmentation of the hippocampus.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The present embodiments represent the best ways known
to the applicants of putting the invention into practice. How-
ever, they are not the only ways in which this can be achieved.



US 9,251,596 B2

5

Primarily, the present embodiments take the form of a
method or algorithm for processing medical (or other)
images. The method or algorithm may be incorporated in a
computer program or a set of instruction code capable of
being executed by a computer processor. The computer pro-
cessor may be that of a conventional (sufficiently high per-
formance) computer, or some other image processing appa-
ratus or computer system. Alternatively, the computer
processor may be incorporated in, or in communication with,
a piece of medical imaging equipment such as an MRI scan-
ner.

The computer program or set of instruction code may be
supplied on a computer-readable medium or data carrier such
as a CD-ROM, DVD or solid state memory device. Alterna-
tively, it may be downloadable as a digital signal from a
connected computer, or over a local area network or a wide
area network such as the Internet. As a further alternative, the
computer program or set of instruction code may be hard-
coded in the computer processor (or memory associated
therewith) arranged to execute it.

Initial Overview

Our method begins with obtaining one or more pre-existing
atlases, in which a set of digital images have already been
labelled or annotated. A set of images onto which the labels or
annotations are to be propagated are also obtained, for
example from an MRI scanner or another piece of medical
imaging equipment. The images in question may be of the
brain. Alternatively they may be of other parts of the human
(or animal) body, such as the knee—for example in order to
diagnose osteoarthritis.

The atlas propagation and segmentation process using our
new method is depicted in FIG. 1, which shows five steps.
Firstly, in step (1), all the labelled images (i.e. atlases) and
unlabelled images are embedded into a low-dimensional
manifold. In step (2), the N closest unlabelled images to the
labelled images are selected for segmentation. Then, in step
(3), the M closest labelled images are registered to each of the
selected images (an example for one selected image is illus-
trated). In step (4), intensity refinement is used to obtain label
maps for each of the selected images. Then, in step (5), steps
(2)-(4) are iterated until further images (and preferably all of
them) are labelled.

As mentioned earlier, atlas-based segmentation benefits
from the selection of atlases similar to the target image. Our
method provides a framework where this is ensured by first
embedding all images in a low dimensional coordinate sys-
tem that provides a distance metric between images and
allows neighbourhoods of images to be identified. In the
manifold learned from coordinate system embedding, a
propagation framework can be identified and labelled atlases
can be propagated in a step-wise fashion, starting with the
initial atlases, until the whole population is segmented. Each
image is segmented using atlases that are within its neigh-
bourhood, meaning that deformations between dissimilar
images are broken down to several small deformations
between comparatively similar images and registration errors
are reduced. To further minimize an accumulation of regis-
tration errors, an intensity-based refinement of the segmen-
tation is done after each label propagation step. Once seg-
mented, an image can in turn be used as an atlas in subsequent
segmentation steps. After all images in the population are
segmented, they represent a large atlas database from which
suitable subsets can be selected for the segmentation of
unseen images. The coordinate system into which the images
are embedded is obtained by applying a spectral analysis step
to their pairwise similarities. As labelled atlases are propa-
gated and fused for a particular target image, the information
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6

they provide is combined with a model based on the target
image intensities to generate the final segmentation.

Thus, to propagate an initial set of atlases through a dataset
of'images with a high level of inter-subject variance, a mani-
fold representation of the dataset is learned where images
within a local neighbourhood are similar to each other. The
manifold is represented by a coordinate embedding of all
images. This embedding is obtained by applying a spectral
analysis step to the complete graph in which each vertex
represents an image and all pairwise similarities between
images are used to define the edge weights in the graph.
Pairwise similarities can be measured as the intensity simi-
larity between the images or the amount of deformation
between the images or as a combination of the two.

In successive steps, atlases are propagated within the newly
defined coordinate system. In the first step, the initial set of
atlases are propagated to a number of images in their local
neighbourhood and used to label them. Images labelled in this
way become atlases themselves and are, in subsequent steps,
further propagated throughout the whole dataset. In this way,
each image is labelled using a number of atlases in its close
vicinity which has the benefit of decreasing registration error.

In an extension of this technique, one or more scans
obtained from the same subject but at different times (so-
called “longitudinal” scans) may be labelled.

After propagating multiple atlases to each baseline scan,
spatial priors obtained from the multiple atlases may be used
to segment not only the baseline scans (as done initially) but
also the longitudinal scans. Hence, this extended technique
enables the simultaneous segmentation of different time
points (e.g. day 0, day 3, day 15, etc.), which in turn allows a
measurement of the differences between time points.

Thus, images of a subject taken at subsequent time points
from the baseline images can be segmented simultaneously
and used to identify intra-subject variance (i.e. differences in
anatomical structure within a single subject but at different
time points).

Graph Construction and Manifold Embedding

In order to determine the intermediate atlas propagation
steps, all images are embedded in a manifold represented by
a coordinate system which is obtained by applying a spectral
analysis step. Spectral analytic techniques have the advantage
of generating feature coordinates based on measures of pair-
wise similarity between data items such as images. This is in
contrast to methods that require distance metrics between
data items such as multidimensional scaling (MDS). After a
spectral analysis step, the distance between two images in the
learned coordinate system is dependent not only upon the
original pairwise similarity between them but also upon all
the pairwise similarities each image has with the remainder of
the population. This makes the distances in the coordinate
system embedding a more robust measure of proximity than
individual pairwise measures of similarity which can be sus-
ceptible to noise. A good introduction to spectral analytic
methods can be found in von Luxburg (2007) and further
details are available in Chung (1997).

The spectral analysis step is applied to the complete,
weighted and undirected graph G=(V, E) with each image in
the dataset being represented by one vertex v,. The non-
negative weights w,; two vertices v, and v; are defined by the
similarity s, the respective images. In the present work inten-
sity based similarities are used. A weights matrix W for G is
obtained by collecting the edge weights w,=s,; every image
pair and a diagonal matrix T contains the degree sums for each
vertex
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The dimension of the feature data derived from a spectral
analysis step can be chosen by the user. In our work, we tested
each dimension for the feature data in turn and assessed the
ability to discriminate between the four subject groups
(young, AD, MCI and older control subjects). The discrimi-
nation ability was measured using the average inter-cluster
distance based on the centroids of each cluster for each fea-
ture dimension. For the groups studied, it was maximal when
using two-dimensional features and reduced thereafter (see
FIG. 2). We therefore chose to use the 2D spectral features as
a coordinate space in which to embed the data.

Image Similarities

In the preferred embodiment of our method, we use an
intensity-based similarity between a pair of images I, and .
This similarity is based on normalized mutual information
(NMI) (Studholme et al., 1999) which is with the entropy H(I)
of an image I and the joint entropy H(L; L) of two images
defined as

H() + Hj)

NMI; =
Y H(I;, 1))

For example, when segmenting the hippocampus, we com-
pute the similarity measure between a pair of images as the
NMI over a region of interest (ROI) around the hippocampus.
The framework is, however, general and a user can choose the
similarity measure and region of interest appropriate to the
region or structure being segmented. To define the ROI, all
training images are automatically segmented using standard
multi-atlas segmentation (Heckemann et al., 2006). The
resulting hippocampal labels are then aligned to a known
brain atlas (e.g. the MNI152-brain T1 atlas (Mazziotta et al.,
1995)) using a coarse non-rigid registration modelled by free-
form deformations (FFDs) with a 10 mm B-spline control
point spacing (Rueckert et al., 1999) between the correspond-
ing image and the atlas. The hippocampal ROI are then
defined through the dilation of the region defined by all voxels
which are labelled as hippocampus by at least 2% of the
segmentations. To evaluate the pairwise similarities, all
images are aligned to the known atlas using the same regis-
trations used for the mask building. FIG. 3 shows the ROI
around the hippocampus superimposed on the brain atlas
used for image normalization.

Segmentation Propagation in the Learned Manifold

In order to propagate the atlas segmentations through the
dataset using the learned manifold, all images I € I are sepa-
rated into two groups, containing the labelled and unlabeled
images. These groups are indexed by the sets L. and U respec-
tively. Initially, L. represents the initial atlas images and U
represents all other images. Let d(I,; L) represent the Buclid-
ean distance between images [, and I, in the manifold. The
average distance from an unlabeled image I, to all labelled
images is:

_ 1
di, L) = mé dl 1.
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At each iteration, the images I, u € U with the N smallest
average distances d(I,) are chosen as targets for propagation.
For each of these images, the M closest images drawn from I,
1 e L are selected as atlases to be propagated. Subsequently,
the index sets U and L are updated to indicate that the target
images in the current iteration have been labelled. Stepwise
propagation is performed in this way until all images in the
dataset are labelled.

N is an important parameter as it determines the number of
images labelled during each iteration and therefore it strongly
affects the expected number of intermediate steps that are
taken before a target image is segmented. M defines the
number of atlas images used for each application of multiatlas
segmentation. A natural choice is to set M to the number of
initial atlases. Independent of the choice of N, the number of
registrations needed to segment K images is MxK. The pro-
cess of segmentation propagation in the learned manifold is
summarized in Algorithm 1:

Algorithm 1: Segmentation propagation in the learned manifold

Set L to represent the initial set of atlases
Set U to represent all remaining images
while Ul >0 do
forallI, EUdo
calculate d(I,,,L)
end for
Reorder index set U to match the order of d(I,,L)
fori=1toNdo
Select M images from I;,] € L that are closest to I,,,
Register the selected atlases to I,
Generate a multi-atlas segmentation estimate of I,
end for
Transfer the indices {uy,...,ux} from Uto L
end while

Multi-atlas Propagation and Segmentation Refinement

Each label propagation is carried out by applying a modi-
fied version of the method for hippocampus segmentation
described in van der Lijn et al. (2008). In this method the
segmentations ¥, j=1, . . . , M obtained from registering M
atlases are not fused to hard segmentation as in Heckemann et
al. (2006) but are instead used to form a probabilistic atlas in
the coordinate system of the target image I. This is an example
of'a “classifier fusion” technique.

Inthe original work, this subject-specific atlas is combined
with previously learned intensity models for foreground and
background to give an energy function that is optimized by
graph cuts. We previously extended this method in a way that
directly estimates the intensity models from the unseen image
and that generalizes the approach to more than one structure
(Wolz et al., 2009). A Gaussian distribution for a particular
structure is estimated from all voxels which at least 95% of
the atlases assign to this particular structure. The background
distribution for a particular structure i with label f, is esti-
mated from the Gaussian intensity distributions of all other
structures with label , j=i and of Gaussian distributions for
the tissue classes T, k=1, . .., 3 in areas where no particular
structure is defined.

By incorporating intensity information from the unseen
image into the segmentation process, errors obtained with
conventional multi-atlas segmentation can be overcome.

Each registration used to build the subject-specific proba-
bilistic atlas may be carried out in three steps: rigid, affine and
non-rigid. Rigid and affine registrations are carried out to
correct for global differences between the images. In the third
step, two images are non-rigidly aligned using a freeform
deformation model in which a regular lattice of control point
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vectors are weighted using B-spline basis functions to pro-
vide displacements at each location in the image (Rueckert et
al., 1999). The deformation is driven by the normalized
mutual information (Studholme et al., 1999) of the pair of
images. The spacing of B-spline control points defines the
local exibility of the non-rigid registration. A sequence of
control point spacings may be used in a multi-resolution
fashion (20 mm, 10 mm, 5 mm and 2.5 mm).

It will be appreciated that, in our method, we use multi-
atlas segmentation to systematically label intermediate
atlases that are then used for multi-atlas segmentation of
target images that are selected according to their similarity
with the previously labelled atlas images. Compared to pre-
vious work, we are dealing with a very diverse set of images.
In such a scenario the gain from only registering similar
images is more likely to outweigh the accumulation of regis-
tration errors.

Experimental Validation

We validated our new method experimentally as follows:
We began by taking an initial set of manually labelled atlases
consisting 0of 30 MR images from young and healthy subjects
(age range 20-54, median age 30.5 years) together with
manual label maps defining 83 anatomical structures of inter-
est. In this set, the T1-weighted MR images had been acquired
with a GE MR-scanner using an inversion recovery prepared
fast spoiled gradient recall sequence with the following
parameters: TE/TR 4.2 ms (fat and water in phase)/15.5 ms,
time of inversion (T1) 450 ms, flip angle 20°, to obtain 124
slices of 1.5-mm thickness with a field of view of 18x24 cm
with a 192x256 image matrix.

We then used our method to propagate this initial set of
atlases to a dataset of 796 MR images acquired from patients
with Alzheimer’s Disease (AD) and mild cognitive impair-
ment (MCI) as well as age matched controls from the Alzhe-
imer’s Disease Neuroimaging Initiative (ADNI) database
(www.loni.ucla.edu/ADNI). In the ADNI study, brain MR
images had been acquired at baseline and regular intervals
from approximately 200 cognitively normal older subjects,
400 subjects with MCI, and 200 subjects with early AD.

From the results discussed below, it will be seen that this
approach provides more accurate segmentations due, at least
in part, to the associated reductions in inter-subject registra-
tion error.

Coordinate System Embedding

We applied the method for coordinate system embedding
described above to a set of images containing the 30 initial
atlases and the 796 ADNI images. We used the first two
features from spectral graph analysis to embed all images into
a 2D coordinate system. The results of coordinate system
embedding are displayed in FIG. 4. The original atlases form
a distinct cluster on the left hand side of the graph at low
values for the first feature. Furthermore it can be seen that
control subjects are mainly positioned at lower values,
whereas the majority of AD subjects is positioned at higher
values. The hippocampal area for chosen example subjects is
displayed in FIG. 4. These types of observations support the
impression that neighbourhoods in the coordinate system
embedding represent images that are similar in terms of hip-
pocampal appearance.

All 796 images were segmented using five different
approaches:

1. Direct segmentation using standard multi-atlas segmen-

tation.

II. Direct segmentation using multi-atlas segmentation in

combination with an intensity refinement based on
graph cuts.
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III. Our new method, with M=30 and N=300 and no inten-
sity refinement after multiatlas segmentation.

IV. Our new method, with M=30 and N=1.

V. Our new method, with M=30 and N=300.
Evaluation of Segmentations

For evaluation we compared the automatic segmentation of
the ADNI images with a manual hippocampus segmentation.
This comparison was carried out for all of the images for
which ADNI provides a manual segmentation (182 out of
796). Comparing these 182 subjects (Table 1) with the entire
population of 796 subjects (Table 2) shows that the subgroup

is characteristic of the entire population in terms of age, sex,
MMSE and pathology.

TABLE 1

Characteristics of the subjects used for comparison between

manual and automatic segmentation

N MF Age MMSE
Normal 57 27/30 77.10 £4.60 [70-89] 29.29 £ 0.76 [26-30]
MCI 84  66/18  76.05 £ 6.77 [60-89] 27.29 +3.22 [24-30]
AD 41 2120 76.08 £12.80 [57-88]  23.12 +1.79 [20-26]

TABLE 2
Information relating to the subjects whose images
were used in this work

N M/F Age MMSE
Normal 222 106/216 76.00 £5.08 [60-90]  29.11 = 0.99 [25-30]
MCI 392 138/254 74.68 £7.39 [55-90]  27.02 +1.79 [23-30]
AD 182 9191 75.84 £7.63 [55-91]  23.35 +£2.00 [18-27]

An example for the segmentation of the right hippocampus
ofan AD subject is shown in FIG. 5, with images (b), (c), (d),
(e) corresponding to methods I, II, IIT and V respectively. A
clear over-segmentation into CSF space and especially an
under-segmentation in the anterior part of the hippocampus
can be observed, both in the case of multi-atlas segmentation
with and without intensity-based refinement (methods I and
II). The fact that the intensity-based refinement cannot com-
pensate for this error is due to the high spatial prior in this area
that is caused by a significant misalignment of the majority of
atlases in this area. The resulting high spatial prior cannot be
overcome by the intensity-based correction scheme. When
using the proposed framework without intensity-refinement
(method III), the topological errors can be avoided, but the
over-segmentation into CSF space is still present. The figure
also shows that all observed problems can be avoided by
using the proposed framework. In FIG. 5 (and also FIG. 6 and
Table 3 below), the results obtained using our new method are
identified by the term “LEAP” (short for “Learning Embed-
dings for Atlas Propagation”).

The average overlaps as measured by the Dice coefficient
or similarity index (SI) (Dice, 1945) for the segmentation of
left and right hippocampus on the 182 images used for evalu-
ation are shown in Table 3. The difference between all pairs of
the five methods is statistically significant with p<0.001 on
Student’s two-tailed paired t-test.
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TABLE 3

Dice overlaps for hippocampus segmentation

Left hippocampus Right hippocampus
Direct 0.775 = 0.087 0.790 = 0.080
[0.470-0.904] [0.440-0.900]
Direct, GC 0.820 = 0.064 0.825 + 0.065
[0.461-0.903] [0.477-0.901]
LEAP, N =300, no GC 0.808 = 0.054 0.814 + 0.053
[0.626-0.904] [0.626-0.900]
LEAP,N=1 0.838 £ 0.023 0.830 +0.024
[0.774-0.888] [0.753-0.882]
LEAP, N =300 0.848 = 0.033 0.848 +0.030
[0.676-0.903] [0.729-0.905]

These results clearly show an improved segmentation
accuracy and robustness for the proposed method. Our
hypothesis is that by avoiding the direct registration of images
whose distance in the embedded space is too large but instead
registering the images via multiple intermediate images
improves significantly the segmentation accuracy and robust-
ness of multi-atlas segmentation. To test this hypothesis we
have investigated the development of the segmentation accu-
racy as a function of distances in the coordinate system
embedding as well as the number of intermediate steps. FIG.
6 shows this for the five segmentation methods in the form of
ten bar plots: Each bar plot corresponds to the average SI
overlap of 18 images (20 in the last plot). The first plot
represents the 18 images closest to the original atlases, the
next plot represents images slightly further from the original
atlases and so on. These results show the superiority of the
proposed method over direct multi-atlas segmentation
approaches in segmenting images that are different from the
original atlas set.

With increasing distance from the original atlases in the
learned manifold, the accuracy of direct multi-atlas segmen-
tation (method 1) as well as multiatlas segmentation with
intensity-based refinement (method IT) steadily decreases. By
contrast, our new method with both parameter settings shows
a steady level of segmentation accuracy. It is interesting to see
that our method with a step width of N=1 (method IV) leads
to worse results than the direct multiatlas methods up to a
certain distance from the original atlases. This can be
explained by registration errors accumulated through many
registration steps. With increasing distance from the atlases,
however, the gain from using intermediate templates, out-
weighs this registration error. Furthermore, the accumulated
registration errors do not seem to increase dramatically after
a certain number of registrations. This is partly due to the
intensity-based correction in every multi-atlas segmentation
step which corrects for small registration errors. Segmenting
the 300 closest images with our new method before doing the
next intermediate step (N=300, method V), leads to results at
least as good as and often better than those given by the direct
methods for images at all distances from the initial atlases.
The importance of an intensity-based refinement step after
multi-atlas segmentation is also underlined by the results of
method III. When applying our new method without this step,
the gain compared to method I gets more and more significant
with more intermediate steps, but the accuracy still declines
significantly which can be explained by a deterioration of the
propagated atlases (note that for the first 300 images, method
1T and method V are identical, as are methods I and I1I). The
influence of N on the segmentation accuracy is governed by
the trade-off between using atlases that are as close as pos-
sible to the target image (small N) and using a design where a
minimum number of intermediate steps are used to avoid the
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accumulation of registration errors (large N). Due to the com-
putational complexity of evaluating the framework, we
restricted the evaluation to two values.

Volume Measurements

A reduction in hippocampal volume is a well-known factor
associated with cognitive impairment (e.g. Jack et al. (1999);
Reiman et al. (1998)). To measure the ability of our method to
discriminate clinical groups by hippocampal volume, we
compared the volumes measured on the 182 manually
labelled images to the ones obtained from our automatic
method (method V, LEAP with M=30 and N=300). Boxplots
showing these volumes for the left and right hippocampus are
presented in FIG. 7, which shows average hippocampal vol-
umes for manual and automatic segmentation using method
IV. The discriminative power for the volume of left and right
hippocampus between all pairs of clinical groups is statisti-
cally significant with p<0.05 on a Student’s t-test but is
slightly less significant than the manual discrimination.

FIG. 8 is a Bland-Altman plot showing the agreement
between volume measurement based on manual and auto-
matic segmentation of the hippocampus (method 1V), with
the solid line representing the mean and the dashed lines
representing +1.96 standard deviations. This plot supports the
impression of the volume measures in FIG. 7 that the auto-
mated method tends to slightly overestimate the hippocampal
volumes. This over-segmentation is more significant for
small hippocampi. The same phenomenon has been described
for an automatic segmentation method before by Hammers et
al. (2007). The intraclass correlation coefficient (ICC)
between the volume measurements based on the manual and
automatic segmentation is 0:898 (ICC (3,1) Shrout-Fleiss
reliability (Shrout and Fleiss, 1979)). This value is compa-
rable to the value 0f 0:929 reported in Niemann et al. (2000)
for inter-rater reliability.

Discussion and Conclusion

In this work we have described our new method for propa-
gating an initial set of brain atlases to a diverse population of
unseen images via multiatlas segmentation. We begin by
embedding all atlas and target images in a coordinate system
where similar images according to a chosen measure are
close. The initial set of atlases is then propagated in several
steps through the manifold represented by this coordinate
system. This avoids the need to estimate large deformations
between images with significantly different anatomy and the
correspondence between them is broken down into a
sequence of comparatively small deformations. The formu-
lation of the framework is general and is not tied to a particu-
lar similarity measure, coordinate embedding or registration
algorithm.

We applied our new method to a target dataset of 796
images acquired from elderly dementia patients and age
matched controls using a set of 30 atlases of healthy young
subjects. In this first application of the method, we have
applied it to the task of hippocampal segmentation even
though the proposed framework can be applied to other ana-
tomical structures as well. The proposed method shows con-
sistently improved segmentation results compared to stan-
dard multi-atlas segmentation. We have also demonstrated a
consistent level of accuracy for the proposed approach with
increasing distance from the initial set of atlases and therefore
with more intermediate registration steps. The accuracy of
standard multi-atlas segmentation, on the other hand, steadily
decreases. This observation suggests three main conclusions:
(1) The decreasing accuracy of the standard multi-atlas seg-

mentation suggests that the coordinate system embedding

used is meaningful. The initial atlases get less and less
suitable for segmentation with increasing distance.
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(2) The almost constant accuracy of the proposed method
suggests that, by using several small deformations, it is
possible to indirectly deform an atlas appropriately to a
target in a way that is not matched by a direct deformation
within the multi-atlas segmentation framework used.

(3) The gain from restricting registrations to similar images
counters the accumulation of errors when using successive
small deformations.

Our results indicate that, if many intermediate registrations
are used, the segmentation accuracy initially declines quickly
but then remains relatively constant with increasing distance
from the initial atlases. The initial decline can be explained by
an accumulation of registration errors which results from
many intermediate registration steps. The reason why the
accuracy does not monotonically decline is likely to be due to
the incorporation of the intensity model during each multi-
atlas segmentation step. By automatically correcting the
propagated segmentation based on the image intensities, the
quality of the atlas can be preserved to a certain level.

Apart from the obvious application of segmenting a dataset
of diverse images with a set of atlases based on a sub-popu-
lation, the proposed method can be seen as an automatic
method for generating a large repository of atlases for subse-
quent multi-atlas segmentation with atlas selection (Aljabar
etal., 2009). Since the manual generation of large atlas data-
bases is expensive, time-consuming and in many cases unfea-
sible, the proposed method could potentially be used to auto-
matically generate such a database.

Notwithstanding the challenge represented by variability
due to image acquisition protocols and inter-subject variabil-
ity in a dataset as large and as diverse as the one in the
ADNI-study, the results achieved with our method compare
well to state of the art methods applied to more restricted
datasets (van der Lijn et al., 2008; Morra et al., 2008; Chupin
et al., 2009; Hammers et al., 2007) in terms of accuracy and
robustness.

Summary
We have presented a new framework for the automatic

propagation of a set of manually labelled brain atlases to a

diverse set of images of a population of subjects. A manifold

is learned from a coordinate system embedding that allows
the identification of neighbourhoods which contain images
that are similar based on a chosen criterion. Within the new
coordinate system, the initial set of atlases is propagated to all
images through a succession of multi-atlas segmentation
steps. This breaks the problem of registering images which

are very “dissimilar” down into a problem of registering a

series of images which are “similar”. At the same time it

allows the potentially large deformation between the images
to be modelled as a sequence of several smaller deformations.
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The invention claimed is:

1. A method of processing medical images, the method
being performed by a computer processor and comprising
steps of:

(a) obtaining one or more atlases containing one or more
images, the one or more images are characterized in that
they are composed of a plurality of voxels wherein at
least some of the voxels correspond to one or more
anatomical features that have been labelled with label
data;

(b) obtaining a plurality of unlabelled images each com-
posed of a respective plurality of voxels;

(c) comparing the one or more labelled images and each
unlabelled image of the plurality of unlabeled images,
resulting in a comparison;
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(d) based on the comparison, selecting one or more unla-
belled images that most closely resemble(s) one or more
of the labelled images;

(e) propagating label data of the one or more labelled
anatomical features from the one or more closest of the
labelled images to each of the selected one or more
unlabelled images, so that when the corresponding ana-
tomical feature(s) of each of the selected images(s)
become labelled, the selected image(s) become labelled
image(s); and

(D) iteratively repeating from step (c), thereby labelling, for
each iteration, one or more others of the unlabelled
images of the plurality of unlabelled images so as to
increase the number of labelled images contained in the
one or more atlases.

2. The method as claimed in claim 1, wherein the step of
comparing the labelled and unlabelled images comprises
embedding the images into a low-dimensional coordinate
system.

3. The method as claimed in claim 2, wherein the low-
dimensional coordinate system is a two-dimensional coordi-
nate space.

4. The method as claimed in claim 1, wherein the step of
comparing the labelled and unlabelled images comprises
defining a set of pairwise measures of similarity by compar-
ing one or more respective anatomical features for each pair
of' images in the set of images.

5. The method as claimed in claim 4, wherein the step of
comparing the labelled and unlabelled images further com-
prises performing a spectral analysis operation on the pair-
wise measures of similarity.

6. The method as claimed in claim 4, wherein the pairwise
measures of similarity represent the intensity similarity
between a pair of images.

7. The method as claimed in claim 4, wherein the pairwise
measures of similarity represent the amount of deformation
between a pair of images.

8. The method as claimed in claim 1, wherein the step of
propagating label data comprises propagating label data from
a plurality of the closest of the labelled images, based on a
classifier fusion technique.

9. The method as claimed in claim 1, further comprising,
after step (e) and before step (f), a step of performing an
intensity-based refinement operation on the newly-propa-
gated label data.

10. The method as claimed in claim 1, wherein the images
are of different subjects.

11. The method as claimed in claim 1, wherein at least
some of the images are of the same subject but taken at
different points in time.

12. The method as claimed in claim 1, wherein the images
are magnetic resonance images.

13. The method as claimed in claim 1, further comprising
labelling an anatomical feature representative of the presence
or absence of a condition and using that feature to derive a
biomarker for that condition.

14. The method as claimed in claim 13, further comprising
allocating a subjectto a diagnostic category on the basis of the
biomarker.

15. The method as claimed in claim 13, further comprising
quantifying a subject’s response to treatment on the basis of
the biomarker.

16. The method as claimed in claim 13, further comprising
selecting a subject’s treatment on the basis of the biomarker.
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17. A system, comprising:
a processor; and
a memory storing instructions therecon, wherein the
instructions when executed cause the processor:
to obtain at least one atlas containing at least one image,
the at least one image is characterized in that it is
composed of a plurality of voxels wherein at least
some of the voxels correspond to one or more ana-
tomical features labeled with label data;
to obtain a plurality of unlabelled images each com-
posed of a respective plurality of voxels;
to compare the at least one image having one or more
anatomical features labeled with label data and the
plurality of unlabelled images, resulting in a compari-
son;
based on the comparison, to select at least one of the
plurality of unlabelled images that most closely
resembles the at least one image having one or more
anatomical features labeled with label data;
to propagate label data from the at least one image hav-
ing one or more anatomical features labeled with label
data from the at least one closest labeled image to each
of the selected unlabelled image, so that when the
corresponding anatomical feature(s) of each of the
selected image(s) become labelled, the selected ima-
ges(s) become labelled image(s); and
to iteratively repeat for each of the selected unlabelled
images, thereby labelling, for each iteration, one or
more others of the unlabelled images of the plurality
of unlabelled images so as to increase the number of
labelled images contained in the at least on atlas.
18. The system of claim 17, wherein the system is a medi-

cal scanner.
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19. The system of claim 18, wherein the system is an MRI
scanner.

20. A non-transitory computer readable medium having
instructions thereon that, when executed, perform operations
comprising:

(a) obtaining one or more atlases containing one or more
images, the one or more images are characterized in that
they are composed of a plurality of voxels wherein at
least some of the voxels correspond to one or more
anatomical features that have been labelled with label
data;

(b) obtaining a plurality of unlabelled images each com-
posed of a respective plurality of voxels;

(c) comparing the one or more labelled images and each
unlabelled image of the plurality of unlabeled images,
resulting in a comparison;

(d) based on the comparison, selecting one or more unla-
belled images that most closely resemble(s) one or more
of the labelled images;

(e) propagating label data of the one or more labelled
anatomical features from the one or more closest of the
labelled images to each of the selected one or more
unlabelled images, so that when the corresponding ana-
tomical feature(s) of each of the selected images(s)
become labelled, the selected image(s) become labelled
image(s); and

(D) iteratively repeating from step (c), thereby labelling, for
each iteration, one or more others of the unlabelled
images of the plurality of unlabelled images so as to
increase the number of labelled images contained in the
one or more atlases.
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